DRILLING FLUIDS EQUIPMENT

For over 30 years OFI Testing Equipment (OFITE) has provided instruments and reagents for testing drilling fluids, well cements, completion fluids, and wastewater. In addition to these product lines we also offer a range of instruments for core analysis. From our manufacturing facility in Houston, TX we provide customers all over the world with quality products and exceptional service.

Our drilling fluids product line includes innovative designs such as the Model 900 Viscometer, which showcases our ability to develop new technology to meet customer and industry demands. We also offer Retorts, Aging Cells, Roller Ovens, Mud Balances, Filter Presses, and all other instruments required to evaluate drilling fluid properties according to API Recommended Practice 13B-1 and 13B-2.

As an independent manufacturer and supplier, OFITE has one priority, our customers.

Model 1100 Pressurized Viscometer

For enhanced data collection, OFITE is pleased to introduce its new Pressurized Viscometer. This fully-automated system accurately determines the fluid characteristics of stimulation fluids, completion fluids, drilling fluids, and cement in terms of shear stress, shear rate, time, and temperature at pressure up to 2,500 PSI.

Using the exclusive ORCADA[™] software, a computer novice can operate the viscometer, and yet the system is versatile enough for advanced research and demanding test parameters. It is suitable for both field and laboratory use. A waterproof, compartmentalized case with wheels makes the unit completely portable.

Features

- Low Shear Rates As low as 0.01 s-1
- **Portable** Rugged case makes for easy transport
- **Rugged** Designed for use in the field or laboratory
- Corrosion Resistant Hastelloy-wetted parts provide extra corrosion control
- Small Footprint Only 12" × 12" (30 × 30 cm). The all-in-one design includes the heating mechanism
- Versatile Available in 115 or 230-volt models
- Real Oilfield Geometry Uses traditional Bobs and Rotor for measurements that are easy to translate (shear stress range 0 -4,000 dynes/cm²)
- Computer-Control and Data Acquisition Uses OFITE's exclusive ORCADA[™] software connected via serial port or Ethernet
- SAFEHEAT[™] Safe, Accurate, Fast, Environmentally friendly, High Efficiency Air Transfer system. More precise control over the sample temperature without the risks of hot oil, such as spilling, splashing or flashing. U.S. Patent Number 8,739,609.

OFI TESTING EQUIPMENT, II 11302 Steeplecrest Dr. Houston, TX 77065 877.837.8683 www.ofite.com

Technical Specifications and Requirements

- #130-81-C Model 1100 Pressurized Viscometer, 115 Volt
 - #130-81-1-C Model 1100 Pressurized Viscometer, 230 Volt

Specifications

- Maximum Pressure: 2,500 PSI (17.2 MPa)
- Maximum Temperature: 500°F (260°C)
- Motor Speeds: Variable from .01 1,000 RPM
- Shear Rate Range: .01 1,002 sec⁻¹
- Size: 14" × 13" × 30" (36 × 33 × 76 cm)
- Weight: 85 lb (37.6 kg)

Requirements

- Power: 115 or 230 Volt AC, 50/60 Hz
- Nitrogen: Up to 2,500 PSI (17.2 MPa)

Software Features

- Write programs based on time, temperature and shear rates
- Multiple calibration points: low and high shear rates
- Computer automatically stores data
- Multiple rheological programs available

Edit Utilities About				_									
mple lest 1 Id Test 1	Sta	art Test Test	t Not Runni	ng						00:0	0:00 Tes	t Elapsed T	Time Comm Timeout
ld Test 2 106		ement								00:0	0:00 Sta	te Elapsed	Time Broadcast
13D 39		Mud								00:0	0:00 Sta	te Total Tin	ne 🥥
			Progr	ess	Raw File Sa	ive Period	Experim	ent Name			Bob		
	T Start	Logging 🔘	Cond P	ause	01:00 m	m:ss				- 5	R1B1		
1-	د <u>م م م م</u>		_	_	دهده	ي ال	ر کر کر ک			ه ه ه	-1	5	Z Temperature
0.8-												F	Shear Stress
0.6-												F	Viscosity
0.4-											221	F	RPM 🔼
¥ 0.2-												-	Temp. pH
a 0.2-												enpo	рН
-0 -											-0	sratu	
a -0.2-												2	
-0.4 -													
-0.6 -												_	
-0.8-												_	Loon Time
-1-											1		
-00:01:54 -00:01:	45 -00:01:3	:0 -00:01:	15 -0	00:01:00 Relative '	-00: lime	00:45	-00:00	:30	-00:00:1	15	00:00:0	L	0 2500
ation He	ater %	Clear	Analys	sis Model		RP 39				*		*	Temperature
4 V	Elapsed Time		Test State	n	Kv	К	Kf	Кр	r	r^2	Factor 1	Facto 🛦	Shear Stress
	00:00:00	<record: 1=""><</record:>	5weep: 1>	0.0000	0.00000	0.00000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0 Dyne/cm^2
Concerning and an arrivation of the second s		-		-		-				/	5		Viscosity pH
0 Enable								2.			-		Shear Rate Temp pH
0 PreHeat								-			-		County Pro-
0 FreHeat		-											0 1/s 0.0
0 FreHeat												r.	0 1/s 0.0

Intro	 For enhanced data collection, OFITE is pleased to introduce the new Model 1100 Pressurized Viscometer. This fully-automated system accurately determines the flow characteristics of fracturing fluids and drilling fluids in terms of shear stress, shear rate, time, and temperature at pressure up to 2500 PSI. Using the exclusive ORCADA[™] software, a computer novice can operate the Model 1100, and yet the system is versatile enough for advanced research and demanding test parameters. The rugged Model 1100 is suitable for both field and laboratory use. A waterproof case with wheels makes the unit completely portable. 					
Components	#130-75-02 #130-75-04 #130-75-20 #130-75-27 #130-75-28 #130-75-70 #130-78-04 #130-78-05 #130-78-13 #130-78-17 #130-78-17 #130-78-34 #130-78-34 #130-78-36 #130-78-36 #130-78-36 #130-81-002 #130-81-002 #130-81-003 #130-81-071 #130-81-071 #130-81-071 #130-81-071 #130-81-21 #130-81-22 #130-81-21 #130-81-22 #130-81-27 #130-81-37 #130-81-38 #130-81-37 #130-81-38 #130-81-169 #132-83 #135-05 #153-00 #153-55 #153-67 #170-17	Cap O-ring, -036, Viton 75D Thermocouple O-ring, -002, Viton 75D */*" Spanner Wrench */*" T-handle Allen Key Vaterproof Plastic Case with Casters Sample Thermocouple Main Seal B1 Bob; Hastelloy with Threads for Stainless Steel Bob Shaft Bearing Bearing, Main Body Rotor Cup O-ring, -218, Viton 70D Packing Washer O-ring, -117, Viton 75D Serial Cable; OB9; M/F O-ring, -029, Viton 75D Internal Pressure O-ring, -034, Viton 75D O-ring, -010, Viton 70D Spiral Retaining Ring Valve Stem Rotor, R1 (C276), HP Torsion spring, 4,000 Dyne/cm ² Bearing Retainer Seal Nut Lower Bearing Retaining Ring, VHM-28 .050 Allen Key Seal Nut Wrench Shaft Assembly Calibration Fluid; 200 cP; 16 oz; Certified Spring Retaining Ring AC Power Cord; 3-Conductor International (Continental Euro- pean) Bottle Brush Silicone Stopcock Grease; Dow Corning; 150g Tube 60cc Disposable Syringe Valve Stem O-ring, -008, Viton 75D				

Optional:

#132-80	100 cP Calibration Fluid; 16 oz.; Certified
#130-81-084	Torsion spring, 16,000 Dyne/cm ²
#132-82	500 cP Calibration Fluid; 16 oz.; Certified
#152-55	Bath/Circulator; Caron Model 2050W; Refrigerated and Heat-
	ed; 115V
#152-55-1	Bath/Circulator; Caron Model 2050W; Refrigerated and Heat-
	ed; 230V
#165-44	High-Temperature Thread Lubricant; 1 oz Tube

Features

- High Pressure Up to 2,500 PSI (17.2 MPa)
- High Temperature Up to 500°F (260°C)
- Low Motor Shear Rates As low as 0.01s-1
- **Portable** The rugged carrying case is designed for field or laboratory use and is easy to transport.
- **Small Footprint** Only 12" × 12" (30 × 30 cm). The all-in-one design includes the heating mechanism.
- **Couette Geometry** Uses traditional Bobs and Rotor for measurements that are easy-to-translate (shear stress range 0–4000 dynes/cm²).
- **Computer Controlled** Using the exclusive ORCADA[™] software system, this viscometer is ideal for advanced research and demanding test parameters.
- **Data Acquisition** Store your data in a text format or in a Microsoft Excel file for easy access and reporting capabilities.
- *SAFEHEAT[™] Safe, Accurate, Fast, Environmentally friendly, High Efficiency Air Transfer system. Compared to traditional oil bath heating systems, *SAFEHEAT[™] provides more precise control over the sample temperature without the risks of hot oil, such as spilling, splashing or flashing.

*U.S. Patent Number 8,739,609

Specifications

Range of Measurement for Model 1100

Deter Deb	DADA	DADO	D4D2		DADE		
Rotor - Bob	R1B1	R1B2	R1B3	R1B4	R185		
Basic Data							
Rotor Radius, RR (cm)	1.8415	1.8415	1.8415	1.8415	1.8415		
Bob Radius, RB (cm)	1.7245	1.2276	0.8622	0.8622	1.5987		
Bob Height, L (cm)	7.62	7.62	7.62	3.81	7.62		
Shear Gap (cm)	0.117	0.6139	0.9793	0.9793	0.2428		
R Ratio, RB/RR	0.9365	0.377	0.468	0.468	0.8503		
Max Temperature (°C)	260	260	260	260	260		
Min Temperature (°C)	0	0 0		0	0		
Shear Stress Range (d	yne/cm²)						
Spring, 130-81-080	1 - 1000	2 - 2000	4 - 4000	8 - 8000	1 - 1160		
Spring, 130-81-082	4 - 4000	8 - 8000	16 - 16000	32 - 3200	4 - 4650		
Spring, 130-81-084	16 -16000	32 - 32000	64 - 64000	128-128000	19-18600		
Shear Rate Range*	<u>.</u>	^		^			
Shear Rate Constant (s ⁻¹ / RPM)	1.7023	0.3770	0.2682	0.2682	0.8503		
Shear Rate Range (s ⁻¹)							
0.01 RPM	0.01702	0.00377	0.00238	0.00238	0.008503		
0.1 RPM	0.1702	0.0377	0.02382	0.02382	0.08503		
1.0 RPM	1.702	0.377	0.2382	0.2382	0.8503		
10 RPM	17.02	3.77	2.382	2.382	8.503		
100 RPM	170.2	37.7	23.82	23.82	85.03		
1000 RPM	1702	377	238.2	238.2	850.3		
Viscosity Range (cP)	<u>.</u>	^		с			
Minimum Viscosity with 130-81-080**	0.1	0.5	1.7	3.4	0.1		
Maximum Viscosity with 130-81-080***	5,875,000	53,125,000	168,750,000	337,500,000	13,750,000		
Minimum Viscosity with 130-81-082**	0.2	2.1	6.8	13.6	0.5		
Maximum Viscosity with 130-81-082***	23,500,000	212,500,000	675,000,000	1,350,000,000	55,000,000		
Minimum Viscosity with 130-81-084**	1.0	8.5	27.2	54.4	1.9		
Maximum Viscosity with 130-81-084***	94,000,000	850,000,000	2,700,000,000	5,400,000,000	220,000,000		

* Lower shear rates available on special order.

** At 1,000 RPM

*** At .01 RPM

When using the 130-81-079 spring use a maximum speed of 300 RPM.

Instrument Geometry	True Couette Coaxial Cylinder
Motor Technology	Stepper
Motor Speeds (RPM)	Variable Speed Range .01 - 1,000
Speed Accuracy (RPM)	.001
Shear Rate Range (sec ⁻¹)	.01 - 1,022
Readout	Computer Control and Data Acquisition
Heat System	300 Watt, Max Temp 500°F (260°C)
Temperature Measurement	Type "J" Thermocouple
Automatic Tests	API Cementing, Mud and Fracture Rheology
Power Requirements	115 or 230 Volts AC, 50/60 Hz
Weight	85 lbs (37.6 kg)
Dimensions	14" × 13" × 30" (36 × 33 × 76 cm)
Shipping Weight	150 lbs (68 kg)
Communication Requirements	RS-232 Serial Port or LAN or Bluetooth.
Operating System	Windows 2000, XP or higher.

Viscosity Conversions To convert from units on left side to units on top, multiply by factor @ intercept.									
To From	Centipoise (cP)	Poise (P)	g/(cm × s)	(mN × s)m ²	mPa × s	<u>(lb × s)</u> 100 ft²			
Centipoise	1	0.01	0.01	1	1	0.002088			
Poise	100	1	1	100	100	0.2088			
g/(cm × s)	100	1	1	100	100	0.2088			
(mN × s)m ²	1	0.01	0.01	1	1	0.002088			
mPa × s	1	0.01	0.01	1	1	0.002088			
$\frac{1b \times s}{100 \text{ ft}^2}$	478.93	4.789	4.789	478.93	478.93	1			

Shear Stress Conversions To convert from units on left side to units on top, multiply by factor @ intercept.								
	Dyne/cm ²	Pa	lb/100ft ²	lb/ft ²	DR			
Dyne/cm ²	1	0.1	0.2084	0.002084	0.1957			
Ра	10	1	2.084	0.02084	1.957			
lb/100ft ²	4.788	0.4788	1	0.01	0.939			
lb/ft ²	478.8	47.88	100	1	93.9			
DR	5.107	0.5107	1.065	0.01065	1			